

Will alternative fuels be ready for shipping to meet its GHG target in 2050?

Presented by Prof Dr Jasmine Lam

Centre Director, Maritime Energy & Sustainable Development Centre of Excellence

Alternative Energy/ Fuels

GENERATION of alternative fuels/ energy

TRANSPORT

APPLICATION

- Feedstock (current & potential): Type, availability, and usage
- Production technologies
- Capacity (current & planned): plants worldwide
- Cost and other concerns: fluctuation, factors affecting the cost

- Storage requirement
- Logistics
- Safety & regulations

- Applicability
- Operation, safety & environment
- Emission reduction: GHG and pollutant emission reduction (on board/ LCA)

Alternative Energy/ Fuels

LNG (fossil-based):

Dominant alternative fuels due to its adequacy (supply) to support entire shipping industry, but unable to meet 2050's GHG target

Biodiesel (1st and 2nd gen):

Able to support partially due to its supply and land use change (<5% of energy demand by shipping industry), used as a drop-in fuel with diesel

Methanol (fossil-based and biomass-based):

Mainly used as a clean fuel and onboard GHG emission reduction

Short- and medium- term 2018-2023 and 2023-2030

Bio-LNG (biomass-based):

Produced from waste and wastewater, able to use as a drop-in fuel with LNG facilitating the industry to meet 2050's GHG target

Bio-methanol (biomass-based):
On-board and LCA GHG emission reduction

Biodiesel (3rd):

There is a need for R&D for 3rd gen biodiesel towards sustainability

Hydrogen (non-bio renewable energy-based): Ideal fuel towards sustainability. Due to the technology maturity, there is a requirement in R&D in its carrier and fuel cell for marine application and establishment of renewable hydrogen supply chain and bunkering infrastructure.

Long-term 2030 onwards

Technology Readiness

LNG and bio-LNG

Natural gas reserves ~180 trillion m³ (R/P ratio 60-80 year)

Dual-fuel engine, fuel gas supply system and storage on board vessels (TRL 9)

Requirement of a global network of infrastructure for its application worldwide

Bio-LNG

Produced from organic waste and wastewater via landfill degradation or anaerobic digestion

Potential for bio-methane production worldwide ~1,000 million m³

Used as a drop-in fuel with LNG

Able to leverage on LNG infrastructure

Presence as bioenergy providing further emission reduction

Requirement of sufficient production of biomethane and value chain development to support its application

Efforts to pave the way for Low-Carbon options in Singapore

- Singapore LNG Terminal, started in 2013, is the first open-access, multi-user LNG terminal in Asia.
- R&D projects; Living labs for green technologies
- Digitalization (digitalPORT@SG) to improve integrated services and efficiency
- Maritime Singapore Green Initiative with a new focus on decarbonisation with new carbon emissions-related incentives

Source: SLNG

MESD Centre Public Reports

Thank you

Jasmine Lam

Linkedin https://www.linkedin.com/in/prof-dr-jasmine-s-l-lam-4288b914/

For more information, please visit MESD website http://coe.ntu.edu.sg/MESD_CoE